
January 2007 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks	
1.	(a) $\frac{1}{2}0.8(15^2 - 10^2) = 50$ (J)	M1 A1 <u>2</u>	
	(b) $F = \mu R = \mu 0.8g$	M1	
	Work-energy $\mu 0.8g \times 20 = 50$ ft their (a) $\mu \approx 0.32$ accept 0.319		
	Alternative for (b)		
	$v^2 = u^2 + 2as \implies a = \frac{15^2 - 10^2}{2 \times 20} = 3.125$	M1	
	N2L $F = \mu mg = ma = 3.125m$ $\mu \approx 0.32$ accept 0.319	M1 A1ft	
	$\mu \approx 0.52$ accept 0.519	A1 <u>4</u>	
	Alternative for (b)		
	WE $F = \frac{50}{20}$ (= 2.5)	М1	
	$F = \mu R \Rightarrow \frac{50}{20} = \mu 0.8g \qquad \text{ft their (a)}$ $\mu \approx 0.32$	M1 A1 ft A1 4	
	The first M1 for (b) could be scored in (a):		
	$v^{2} = u^{2} + 2as \Longrightarrow 10^{2} = 15^{2} - 2 \times 20 \times (-)a \Longrightarrow a = (-)\frac{125}{40}$	(b)M1	
	$F = ma \Rightarrow F = 2.5$ WD = F × d $\Rightarrow 2.5 \times 20 = 50J$	(a)M1A1	

Question Number	Scheme	Marks	
3.	(a) Large Small Template Mass Ratios 24^2 8^2 , 512 anything in ratio $9:1:8$ (c.1810 c.200 c.1610) M(A) $9 \times 24 = 16 \times 1 + 8\overline{x}$ $\overline{x} = 25$ (cm) exact	B1, B1ft M1* A1 DM1* A1	<u>6</u>
	(b) M(axis) $11M = 12 \times \frac{1}{4}m$ ft their \overline{x} ($(36 - \overline{x})M = 12 \times \frac{1}{4}m$)	M1 † A1ft	
	$M = \frac{3}{11}m$ (o.e.e.)	DM1 † A1	10 10
4. (a)	$u \qquad \text{NEL} 3v - (-v) = eu \\ u = 8v$	M1 A1 A1 <u>3</u>	
(b)	$m \qquad km \qquad LM \qquad 8mv = -mv + 3kmv \text{ft their } u \\ (m \times (u) = -mv + 3kmv) \\ k = 3$	M1 A1ft	
(c) ($k = 3$ $k = 3$ $M = -3my + 11my \text{ ft their } k$ $NEL = 2y = e \times 3v$ $y = \frac{9}{8}v \Rightarrow e = \frac{3}{4} \bigstar cso$	A1 <u>3</u> M1 A1ft M1 A1 <u>4</u>	
	(d) $y = \frac{9}{8}v > v \implies$ further collision between P and Q A1 is cso – watch out for incorrect statements re. velocity	M1 A1 <u>2</u> 1	12

Question Number	Scheme	Marks
5.	(a) $M(A)$ $T \sin \theta \times 4a = mg \times 2a + 2mg \times 3a$ $T = \frac{8mg}{4} \times \frac{5}{3} = \frac{10}{3}mg$ Accept 32.7m, 33m (b) $\rightarrow R = T \cos \theta = \frac{10}{3}mg \times \frac{4}{5}; = \frac{8}{3}mg$ \bigstar cso ft their T (c) $\uparrow F + T \sin \theta = 3mg \Rightarrow F = mg$ $F = \mu R \Rightarrow \mu = \frac{3}{8}$ (a) Alternative approach: $\rightarrow R = T \cos \theta$ $\uparrow F + T \sin \theta = 3mg$ $M(B) F \times 4a = mg \times 2a + 2mg \times a \Rightarrow F = mg$ $F = \mu R \Rightarrow \mu = \frac{3}{8}$ (a) Alternative approach: $\rightarrow R = T \cos \theta$ $\uparrow F + T \sin \theta = 3mg$ $M(B) F \times 4a = mg \times 2a + 2mg \times a (\Rightarrow F = mg)$ $\Rightarrow mg + T \sin \theta = 3mg \Rightarrow T = \frac{2mg}{\sin \theta} = \frac{10mg}{3}$ If they use this method, watch out for F=mg just quoted in (c): M1A1	M1* A1=A1 DM1* A1 <u>5</u> M1 A1ft; A1 M1 A1 <u>4</u> 12

٦

	(a) N2L (1	$1.5t^2$ 2) i + 2ti = 0.5a		N/1	
6.	($1.5t^2 - 3\mathbf{i} + 2t\mathbf{j} = 0.5\mathbf{a}$		M1	
	:	$\mathbf{a} = \left(3t^2 - 6\right)\mathbf{i} + 4t\mathbf{j}$		A1	2
	(b) •	$\mathbf{v} = (t^3 - 6t)\mathbf{i} + 2t^2\mathbf{j} (+\mathbf{c})$		M1 A1	
		$\mathbf{j} = -4\mathbf{i} + 8\mathbf{j} + \mathbf{c}$ $(\mathbf{c} = -3\mathbf{j})$		M1	
		$\mathbf{v} = (t^3 - 6t)\mathbf{i} + (2t^2 - 3)\mathbf{j}$ (m s ⁻¹)	A1	
		$\mathbf{v} = 9\mathbf{i} + 15\mathbf{j} (ms^{-1}) \mathbf{*}$	cso		5
	1-5	$\mathbf{v} = \mathbf{y} + \mathbf{i} \mathbf{y} + \mathbf{i} \mathbf{y} + \mathbf{i} \mathbf{y}$	CSU	A1	<u> </u>
	(c) $Q = 0.5(-3i + 3i)$	$20\mathbf{j} - (9\mathbf{i} + 15\mathbf{j})) (= 0.5(-12)$	$(\mathbf{i} + 5\mathbf{j})$	M1	
	Q	$= 0.5\sqrt{(5^2 + 12^2)} = 6.5$		M1 A1	<u>3</u>
		_			
	(d) acute as	ngle is $\arctan \frac{5}{12} \approx 23^{\circ}$		M1 A1	
	or required	d angle is $\arctan \frac{-5}{12}$			
	or acute an	ngle is $\arccos \frac{12}{13} \approx 23^{\circ}$			
	or required	d angle is $\arccos \frac{-12}{13}$			
	requ	ired angle is 157°	awrt 157°, 203°	A1	<u>3</u> 13

Question Number	Scheme	Marks	
7.	(a) Energy $\frac{1}{2}m(24.5^2 - u^2) = mg \times 15$	M1 A1=A1	
	$u^2 = 24.5^2 - 30g = 306.25$ $u = \sqrt{306.25} = 17.5$ ★ cso	A1 <u>4</u>	
	(b) $\rightarrow u_x = u \cos \theta = 17.5 \times 0.8 = 14$	B1	
	$\psi = \arccos \frac{14}{24.5} \approx 55^{\circ}$ accept 55.2°	M1 A1 <u>3</u>	
	(0.96 rads, or 0.963 rads)		
	(c) $\uparrow u_y = u \sin \theta = 17.5 \times 0.6 = 10.5$	B1	
	$s = ut + \frac{1}{2}at^2 \implies -45 = 10.5t - 4.9t^2$	M1 A1	
	leading to $t = 4.3$, awrt $t = 4.3$ or $t = 4\frac{2}{7}$	A1	
	$\rightarrow BD = 14 \times 4\frac{2}{7}$ (14 x t) ft their t	M1 A1ft	
	= 60 (m) only	A1 <u>7</u> 14	
	Alternative for (a)		
	$\rightarrow u_x = u \cos \theta = 0.8u, \uparrow u_y = u \sin \theta = 0.6u$		
	$v_y^2 = 0.36u^2 + 2 \times 9.8 \times 15 = 0.36u^2 + 294$		
	$24.5^2 = u_x^2 + v_y^2 = 0.64u^2, +0.36u^2 + 294$	M1 A1,A1	
	$u^2 = 306.25 \implies u = 17.5 \bigstar$ cso	A1 <u>4</u>	
	Alternative for (b) $\rightarrow u_x = u \cos \theta = 17.5 \times 0.8 = 14$	B1	
	$\uparrow v_y^2 = u^2 \sin^2 \theta + 2 \times 9.8 \times 15 = 404.25$		
	$\psi = \arctan \frac{\sqrt{404.25}}{14} \approx 55^{\circ} \qquad \text{accept } 55.2^{\circ}$	M1 A1 <u>3</u>	
	Alternative for (c) Use of $y = x \tan \theta - \frac{g \sec^2 \theta}{2u^2} x^2$	M1	
	$-45 = \frac{3}{4}x, -\frac{g}{2 \times 17.5^2} \times \frac{25}{16}x^2$	B1,A1	
	$x^2 - 30x - 1800 = 0$ o.e. Factors or quadratic formula BD = 60 (m)	A1 M1 A1ft A1	